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Abstract: The velocity field induced by nonlinear internal waves generated by multicomponent barotropic tidal 

flow over topography for the conditions of the Sea of Okhotsk (South-East shelf of Sakhalin Island) is used to 

estimate dynamical loads on underwater vertical cylindrical parts of marine engineering structures. The 

intensity of lateral surface pressure and the rate inertia moment are expressed according to Morison’s formula 

for a cylidrical pile of 2.5 m diameter and 100 m height and computed as functions of time. They can reach 

values of 1.9·10
5
 N and 10 MN∙m, respectively, during the flood phase of the tide. 

 

Key-Words: Internal waves, drag force, inertial force, shear force, torque, load, Morison equation, near-bottom 

velocity, barotropic tide 

 

1 Introduction 
Investigation of internal gravity waves is one of the 

most important problems of modern oceanology. 

Such waves propagate within the stably stratified 

ocean, exerting a significant influence on all the 

processes taking place in the surrounding 

environment. Although the internal and surface 

gravity wave are of the same nature, the amplitudes 

of the former are much larger, since the reduced 

gravity acceleration acts on the fluid particles within 

the fluid. Intensive internal gravity waves are one of 

the most serious threats that call into question the 

safety of hydraulic engineering constructions on the 

continental shelf [1, 2]. 

The velocities induced by internal waves can 

produce significant local loads and bending 

moments [3 – 8] on the cantilever beams supporting 

a drilling rig and oil platforms. There are cases 

when, under the influence of internal waves, the oil 

platforms are displaced 200 m in the horizontal and 

10 m in the vertical direction. Nonlinear internal 

waves can cause a significant increase (up to twice) 

in the tension of the anchor chains [5] used in spar 

platforms. The intensity of influence of such a wave 

with a maximum horizontal velocity of 2.1 m/s is 

comparable with the influence of a surface wave 

with a length of about 300 m and a height of 18 m 

[9]. The results of field observations in the South 

China Sea suggest that intensive internal waves 

induce significantly greater loads and torques in 

hydraulic engineering constructions than surface 

waves. The danger of such waves is recognized as 

critical, so development and adaptation of models 

that allow to estimate a risk of the intense internal 

waves impact on hydraulic engineering 

constructions is an actual and practically significant 

task. 

When underwater structures are flowed around 

by stream induced by internal gravity waves, the 

intensity of the the side surface pressure on 

hydraulic engineering constructions is usually 

calculated approximately according to the Morison 

equation [10 – 12]. In the framework of this 

approach flow pressure contains the inertial (linear, 

depending on the acceleration of fluid particles in 

the wave) and the velocity (non-linear resistance 

force, quadratic in velocity) components. This 

method for the first time was suggested in [13] to 

evaluate the forces associated with surface waves 

and influencing on vertical cylindrical objects in 

water, supports, piles or pillars, supposing that the 

cylinder diameter, D, is much smaller than the 

typical wavelength L so that the wave field almost 

doesn’t "feel" the pillar. Let us consider in more 

details the application of this method to estimate the 
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impact of internal waves on the support of hydraulic 

engineering constructions. 

 

2 Mathematical model of internal 

wave impact on hypothetical pillars of 

hydraulic engineering constructions 
Following [14], we consider small oscillations in the 

vertical plane (x, z) of a cylinder submerged into 

water (Fig. 1). 

 
Fig. 1. A cylinder submerged into water 

 

It is assumed that the distribution of masses 

inside the cylinder can be generally inhomogeneous. 

The equations of motion of the cylinder are: 
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where m – mass of the cylinder, J – the moment of 

inertia with respect to cylinder’s center of gravity, 

xc, zc, φ – coordinates of the center of gravity and 

the rotation angle of the cylinder centerline, X, Z – 

the projections of the external forces and M – their 

moment relative to the center of gravity. When we 

calculate the values of X, Z, M, associated with the 

water pressure under the influence of flow around 

the cylinder, we assume that the pressure is exerted 

only by the normal component of the flow, vn, wn. 

The intensity fn(s) of pressure on the lateral surface 

of cylinder is calculated by the Morison formula [10 

– 12] and contains inertial fI and velocity fD 

components. 
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Here v
e
n – relative normal projection of the velocity 

at point s on the cylinder centerline, vn and an — 

projections of the velocity and acceleration of water, 

u(s, t) and w(s, t) calculated at the point x = xc + s 

sinφ, z = zc + s cosφ, v
c
n – projection of the velocity 

of the cylinder centerline’s point s, S = πR
2
 – cross-

sectional area, R – radius of the cylinder, constants 

CD and CM are empirical, averaged over the typical 

period of the wave drag and inertia coefficients, 

respectively. They can be defined for a wide range 

of control parameters: the Kelegan – Carpenter 

number K (= UmT/D), the Reynolds number Re (= 

UmD/) and the relative roughness k/D, where D is 

the diameter of the circular cylinder, Um is 

maximum flow velocity, T is the typical period of 

oscillations in the flow,  is the kinematic viscosity, 

k is the average size of the irregularities. 

The force Fn directed by the normal to the 

cylinder axis and the moment M′ are obtained by 

integrating over the length of the underwater part of 

the cylinder 
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where s1 < 0 corresponds to the lower end of the 

cylinder, and s0 > 0 is the point of intersection the 

cylinder axis and the sea surface. If the cylinder 

(pile, support) is assumed to be stiff (the bending 

angles are small) and is fixed at the bottom, then      

s  z, and the integration in (3) can be carried out 

over the entire water column in case when the 

cylinder is longer than the sea depth, and over the 

entire height of the cylinder when it is completely 

submerged. 

The force Fn and the moment M′ can be easily 

determined if the velocity, normal to the cylinder, 

and acceleration components are known. In the case 

of small oscillations, this is the horizontal velocity 

component u and its time derivative – an 

acceleration an = u/t, which can be easily 

calculated.  

To compute the integrals (3), the normal velocity 

and acceleration must be known for the whole range 

of values of the vertical coordinate z, which is not 

always possible for experimental data and field 

observations, or the resolution can be inadequate. 

Therefore, preliminary theoretical estimates play 

here a very important role. Integration can be done 

using the Simpson method, with the help of standard 

utilities. 

It should be noted that the representation of the 

flow pressure force on the cylinder (2) at the point 

in the form of a sum of two components fI and fD is 

valid only approximately. Such a separation is 
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semiempirical and requires in each case an 

experimental proof. It is not uniform in all possible 

ranges of K, Re and k/D. More general formulations 

for forces acting on a solid submerged in a fluid 

body were presented by Lighthill [15] in terms of 

both velocity and vorticity. It was shown that the 

viscous drag force and the inviscid inertia force are 

not independent, and that the appearance and 

diffusion of vorticity influences on both components 

of the force in a nonstationary flow. In this case, 

even the coefficient of inertia (or the coefficient of 

the added mass), CM, is not constant and varies in 

time, even during the oscillation period of the flow, 

and also when the control parameters (Re, K, k/D, 

shape and orientation of the body) are changing. 

However, this simplified approach is useful for the 

first rough estimates of dynamical loads from wave-

induced currents on underwater engineering 

structures. 

 

3 Numerical modeling of internal 

gravity wave dynamics in the conditi-

ons of the Sakhalin island shelf 
The main goal of this work is to study the influence 

of internal gravity waves on the pillars of hydraulic 

engineering constructions. The following tasks were 

solved for this purpose:  

 initialization of the background conditions in 

the numerical model: temperature, salinity, pressure, 

water level fluctuations, bathymetry data were 

processed (data records were made by SakhNIRO, 

Russia in the summer in the southern part of the 

Sakhalin continental slope in 1999 – 2003 years);  

 modeling of internal wave dynamics in 

oceanographic conditions that correspond to the 

shelf zone of Sakhalin Island in the Sea of Okhotsk;  

 estimation of internal waves’ impact on 

hypothetical pillars of hydraulic engineering 

constructions on the basis of the predicted velocity 

fields induced by internal waves. 

Investigation of internal waves’ dynamics was 

carried out in the framework of program complex 

intended for numerical modeling of propagation and 

transformation of such waves in the ocean, that 

implements procedure of numerical integration of 

fully nonlinear two-dimensional (vertical plane) 

system of equations of hydrodynamics inviscid 

incompressible stratified fluid in the Boussinesq 

approximation bearing in mind the impact of 

barotropic tide [16]: 

  gkPkVfVVVt ρ
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where V


(u, v, w) is the velocity vector,  is the 

three dimensional vector gradient operator, subscript 

t denotes the time derivative, f – the density of sea 

water, 0 – the average or characteristic density 

(introduced owing to the Boussinesq approximation 

that assumes that the density f = 0(1 + ) only 

changes insignificantly in the basin and  is a 

nondimensional quantity that has a meaning of 

density anomaly), P is the pressure, g is acceleration 

due to gravity, f is, as above, the Coriolis parameter 

and k


 is the unit vector along the z-direction. The 

waves propagate in the x-direction, y-axis is 

perpendicular to the wave motion and z is the depth. 

The normal to the wave propagation (cross-

section) velocity is included in the model, but no 

variation along the y-coordinate is allowed. This is 

realised by neglecting the partial derivatives with 

respect to y in the basically three-dimensional 

equations (4 – 7). The equations are transformed to 

a terrain-following coordinate system (so-called 

sigma-coordinates). The equations are solved over a 

domain bounded below by the topography h(x) 

(prescribed by the user) and covered by a rigid lid at 

the surface. 

To initialize the model, it is necessary to 

prescribe horizontally homogeneous density field of 

water masses mean(z) as well as the velocity 

distribution in the barotropic tidal field in the 

computational domain. The steps of the numerical 

scheme in space and time are chosen to satisfy the 

Courant–Friedrich–Levy criterion for stability. 

To determine water depth we used good 

resolution bathymetry data between 140 and 150 

degrees west longitude and 40 and 50 degrees north 

latitude, that were provided by SakhNIIRO. Then 

we defined a section between points 143.55 E, 46.25 

N and 144.13 E, 45.36 N in the shelf of Sakhalin 

Island area. Its length is 128 km. Since horizontally-

homogeneous density field is used in our numerical 

model, the density profile from the outer edge of the 

section was taken, which is obtained by 

approximating and averaging of in-situ data on 

temperature, salinity and pressure from the sensors. 
Detailed description of algorithm of this stage is 

presented in [17]. Density anomaly field, 

bathymetry for chosen section and position of 

hypotetic pile are shown in Fig. 2. 

An important condition for initialization of the 

model is the structure of the barotropic tide. The 

horizontal velocity ubtr in the barotropic tide is given 

by: 
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Fig. 2. Density anomaly field, bathymetry and 

position of hypotetic pile. 

 

re Qi – the maximum cross flux of water for the 

corresponding component of the tide, r(x) = H – h(x) 

– the local depth of the fluid, i – the frequency of 

the tidal component,  – its initial phase, and the i-

index indicates the various tidal components (M2, 

N2, etc.). The flow velocities of the components 

iUmax in the barotropic tide are calculated from the 

data on the tidal level rise i. From the continuity 

equation we obtain the expression for the vertical 

velocity of the barotropic tide 
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2btr iii

i

tHz
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The barotropic tide velocity vbtr in the transverse 

direction with respect to our section is given by: 
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In accordance with (8) – (12), the initial velocity 

field is initialized as follows (there are no internal 

waves at the initial time): 
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The barotropic tide was initialized as a 

superposition of the components M2, N2, Q1, O1, 

P1, K1 [18].The Coriolis parameter in the 

considered sea area is f = 0.0001051 s
-1

. 

 

 

   
Fig. 3. x-t diagram of the total velocity in the 

projection on the tangent to the bottom line (upper 

panel) and the velocity of the barotropic tide 

(middle panel). 
 

For engineering applications, it is of great 

interest to estimate the contribution of internal 

waves to the formation of near-bottom currents, so 

we have analyzed the structure of the tangential to 

the bottom velocities for this model case. We 

defined the projection of the total velocity on the 

tangent to the bottom and obtained its time 

dependence at each point of the cross-section (Fig. 

3, Fig. 4). Also we plotted the x-t diagrams only  for 
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Fig. 4. x-t diagram of the vertical (upper panel) and 

horizontal (middle panel) baroclinic velocity 

components for chosen section 

 

the velocities of the near-bottom barotropic tidal 

flows and determined the contribution of the vertical 

velocity components of the wave field to the total 

near-bottom velocity. As can be seen from Fig. 4, 

this contribution is negligible for our model case. 

Finally, let us separate out the contribution of 

internal waves to the velocities of the near-bottom 

currents. From Fig. 4 one can see that the values of 

the velocities of the bottom currents in the field of 

internal waves on the shelf edge (where the 

topography changes are mostly expressed) are of the 

same order as the velocities of the barotropic tidal 

current for the Sakhalin island shelf. But the internal 

wave components of the near-bottom velocities have 

a more complex, irregular spatio-temporal structure. 

However, structure of the current in the shallower 

part of the section is again determined mainly by the 

barotropic tidal flow. 

To calculate shear forces and torques we 

determine the field of horizontal velocity (and 

acceleration) at the location of hypothetic pile (we 

put it to the point x = 55 km) throughout the depth 

of the fluid depending on time (Fig. 5). As one can 

see, the velocity field becomes more irregular after 

some time due to the generation of internal waves. 

 
Fig. 5. The total velocity at the location of 

hypothetic pile throughout the depth of the fluid 

depending on time 

 
Fig. 6. The total force and the moment of force with 

respect to a bottom at the location of hypothetic pile 

depending on time 

 

Total shear force and the moment M′ with 

respect to a bottom (see eq. (3)) are shown in Fig. 6. 

The characteristic length of internal waves is of 

order of hundreds of meters, so that the effect of pile 

with R = 2.5 m to the wave field can be ignored (i.e., 

D/L < 0.15). We choose the empirical coefficients 

CM = 1.8 and CD = 0.6 taking into account the con-

siderations presented in article [4]. The maximal 

absolute values of the force and the moment are 
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reached at the first tidal cycle while there are no in-

tensive internal waves and the structure of the cur-

rent is still approximately barotropic. When internal 

waves are generating, the velocity/acceleration may 

have different signs at different depths. Consider a 

distribution of the loads upon unit length of the 

pillar at different times (Fig. 7). In Morison 

equation, the force acting to a cylinder is a linear 

sum of a velocity-squared-dependent drag force and 

an acceleration-dependent inertial force. The inertial 

force is mainly smaller in absolute value than the 

drag force during this process (Fig. 8). But at certain 

times inertial force becomes comparable to drag 

force. Significant irregularity of the distribution of 

the load throughout the depth is the typical feature 

of the influence of internal waves.  

 

 

 
Fig. 7. The vertical distribution of the drag force and 

inertial force (both normalized for the unit length of 

the pile) at different times. 

 
Fig. 8. The vertical distribution of the ratio of drag 

force maximal absolute value to inertial force 

maximal absolute value (both normalized for the 

unit length of the pile). 
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